Tillage and Soil Fertility to Drip Irrigated Sugarcane

Dr. Glauber J.C. Gava, (APTA-SP)
Dr. Emídio C.A. de Oliveira, (UFRPE-PE)
Dr. Marconi Teixeira Batista, (IFGO-GO)
Ms. Oriel Tiago Kölln (USP-SP)

Maceió-Alagoas
08/05/2011
Yield maximum theoretical to sugarcane

If the discrimination of carbon is equal to 0 (theoretical stress 0). Yield will 106 Mg ha$^{-1}$ of dry stalks. These values to 70% moisture will yield of 353 Mg ha$^{-1}$. Values close to those reported by Irvine (1983) equal to 380 Mg ha$^{-1}$.

\[
S_{dm} = 106.9 - 15.70^{*13}C \\
R ^2 = 0.47 \\
\text{Significative p}<0.05
\]

Yield maximum theoretical to sugarcane

Climate (water availability)

Genetics:
(genotypes of high productivity)

Soil

- Physical properties
 (sand, silt, clay and Compaction …)

- Chemical properties
 (Nitrogen, phosphorus, potassium, calcium and gypsum …)
Schematic of Subsurface Drip Irrigation System

- Pump Station
- Backflow Prevention Device
- Flowmeter
- Chemical Injection System
- Filtration System
- Submain
- Dripline Laterals
- Zones 1 and 2
- Flushline
- Air & Vacuum Release Valve
- Pressure Gage
- Flush Valve
- Zone Valve

Gava, et. al. (2011).
Experimental Station Jau, SP - APTA
Lat. 22 ° 17 ' S, Long. 48 ° 34 ' W and altitude 580 m
Average precipitation 1,350 mm
Oxisol (Dark red)
Irrigation in sugarcane

Automatic weather station

Data Plotter

Radiometer

Temperature sensor and RU

PENMAN-MONTEITH, ALLEN et al. (1998)

\[
ETP = \frac{0.408_s(Rn - G) + \gamma 900U_2 (e_s - e_a)}{t + 273} \frac{\gamma}{S + \gamma(1 + 0.34U_2)}
\]
Results

Drip irrigation (average two crop cycles 1.797 mm)
Dry system (average two crop cycles 1.437 mm)

Drip - Dry = 29 t.ha⁻¹
Average

Drip - Dry = 17 t.ha⁻¹
Average

Drip - Dry = 45 t.ha⁻¹
Average

Gava, et. al. (2011).
Simple Model of How Sugarcane Might Respond to Stress

Aboveground stress:
- light
- insects
- temperature

Belowground stress:
- nutrients
- water
- oxygen

Carbon Storage → Carbon Production → Leaf Growth → Root Growth → Water & Nutrient Uptake → Water & Nutrient Utilization

Leaf Growth: Carbon Production

Carbon Storage: Nutrient Utilization
GENETIC: (Phenotyping ^{13}C)

Mass spectrometer (ANCA – CNS)
$^{13}C_{\Delta} \% \text{ isotope fingerprint of varieties}$

Gava, et al. (2010)
$^{13}\text{C}_\Delta \%$ isotope fingerprint of varieties

Gava, et. al. (2010)
$^{13}\text{C}_\Delta$ %. Isotope fingerprint of varieties

Gava, et al. (2010)
Genotypes of high productivity

GENETIC: (Phenotyping 13C)

- **RB855536** (line), $Y = 94.48 - 13.31^\circ X$, $R = 0.72$, significative ($p < 0.05$)
- **RB867515** $Y = 124.10 - 18.72^\circ X$, $R = 0.51$, significative ($p < 0.05$)
- **SP80-3280** $Y = 141.48 - 23.58^\circ X$, $R = 0.83$, significative ($p < 0.05$)

RB855536 (line), RB857515 (points) and SP80-3280 (dashed) — Gava, et. al. (2011)
SOIL: physical properties

- Soil Texture
- Three sizes of soil particles
 - Sand, 2.00-.05 mm
 - Silt, .05-.002 mm
 - Clay, <.002 mm
 - Particle size affects surface area
SOIL: physical properties

Textural Triangle

- Percent Sand
- Percent Silt
- Percent Clay

Types of soil:
- Sand
- Loam
- Silt
- Clay
- Silty

Soil classifications:
- Sandy
- Clay
- Loamy
- Silty Clay
- Sandy Clay
- Loam
- Clay Loam

Soil properties:
- 60%
- 75%
- 90%
- 35%
- 20%
- 10%
- 20%
- 75%
- 90%
SOIL: physical properties

Clayey Soil (fine textured)
SOIL: physical properties

Loamy/Silty Soils (medium textured)
SOIL: physical properties

Sandy Soils
(coarse textured)
SOIL: physical properties

- Volume of small pores
- Volume of large pores
- Amount of pore space

Graph showing:
- Total pore space
- Volume of small pores
- Volume of large pores

X-axis: sand, loam, clay
Y-axis: Large amount, Small amount

Amount of pore space decreases from sand to clay, while total pore space increases.
• Soil Water Release Curve
 – Curve of matric potential (tension) vs. water content
 – Less water \rightarrow more tension
 – At a given tension, finer-textured soils retain more water (larger number of small pores)
SOIL: physical properties

- Determines how water penetrates the soil.
- Determines how much water remains in the soil.
Argilossolos: (Ultisols)

26% Brazil

Argillic horizon (B textural).
Low activity clay or with high activity clay.
Increased water retention.
High and medium fertility.
Latossolos: (Oxisols)

Yellow, Red and Purple

50 % Brazil

Rich in iron and aluminum oxides.
Loam textured.
Average water retention.
High retention of phosphorus.
Average fertility.
Soil acidity.
NEOSSOLOS
QUARTZARÊNICOS (Entisols)

6% Brazil

Sandy texture.
Essentially quartz.
Low fertility.
Low water retention.
Brazil soils
Soil compaction

• Causes include combinations of:
 - Machines traffic
 - Tillage
 - Precipitation
Soil Tillage (Subsoiler)
Disc plow

Heavy harrow
Light harrow
Evolution of the planting of sugarcane

500 years...

10 years of mechanized planting...

24 months Plene
Evolution of the planting of sugarcane

<table>
<thead>
<tr>
<th>Manual Planting</th>
<th>Mechanized Planting</th>
<th>Plene Planting (mini stalks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-14 t / ha</td>
<td>18-20 t / ha</td>
<td>1,5-2 t / ha</td>
</tr>
</tbody>
</table>

Mini stalks (Plene) requires the equivalent of 10 to 15% of a manual or mechanized planting.

Manual planting
- High need for manpower
- High consumption of sugar: 12 t / ha
- Low performance: 140 people for 20 ha / day
- High soil compaction by intensive tillage

Mechanized planting
- High demand for heavy equipment
- High sugar consumption: 18 t / ha
- Low performance: 6 ha / day
- High soil compaction and intensive tillage
Evolution of the planting of sugarcane

<table>
<thead>
<tr>
<th></th>
<th>Mechanized Planting</th>
<th>Manual Planting</th>
<th>Mini stalks (Plene)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 planters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 tractors (240 hp)</td>
<td></td>
<td></td>
<td>2 planters,</td>
</tr>
<tr>
<td>1 tractor (95 hp)</td>
<td></td>
<td></td>
<td>2 Tractors (120/180 hp)</td>
</tr>
<tr>
<td>18 equipment.</td>
<td></td>
<td>32 equipment.</td>
<td>5 equipment.</td>
</tr>
<tr>
<td>16 trucks</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 8 tractors (240 hp)
- 3 tractors (135 hp)
- 1 tractor (95 hp)
Mechanized sugarcane harvesting
Mechanized sugarcane harvesting

Conventional Planting
Compaction
Mechanized sugarcane harvesting
Mechanized sugarcane harvesting

Pineapple Row Planting

PLANTIO COMBINADO 40 X 1.40 (PLANTIO ABACAXI)
Mechanized sugarcane harvesting
Mechanized sugarcane harvesting

![Graph showing the relationship between crop yield and level of compaction](image)

- **Crop Yield**
- **Level of Compaction**

- Too Low
- Optimum
- Too High
Limiting factors

Previously..... Today!!!

Yield of sugarcane

<table>
<thead>
<tr>
<th></th>
<th>Previously</th>
<th>Today</th>
</tr>
</thead>
<tbody>
<tr>
<td>t ha⁻¹</td>
<td>70</td>
<td>150</td>
</tr>
</tbody>
</table>

Chemical properties

N P K Mg Micr.
Chemical properties

Nutricional requirement of sugarcane

<table>
<thead>
<tr>
<th>Ciclo</th>
<th>Macronutrientes</th>
<th>Micronutrientes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>P</td>
</tr>
<tr>
<td>Cana Planta</td>
<td>1,24</td>
<td>0,15</td>
</tr>
<tr>
<td>Cana Soca</td>
<td>1,55</td>
<td>0,21</td>
</tr>
</tbody>
</table>

Cane Plant Crop:
- K > N > Ca > Mg = S > Fe > P > Mn > Zn > B > Cu

Ratoon Crop:
- K > N > Ca > S > Mg > Fe > P > Mn > Zn > B > Cu

Genotype: SP81 - 3250, an average of three Oxisols

Oliveira et al. (2011)
Biomass and nutrients accumulation

\[\frac{dN}{dt} = \frac{\alpha N}{1 + \exp\left(-\frac{x - \beta}{\gamma}\right)} \]

T\textsubscript{1}\textsuperscript{st}fase: Significant gains initiation;

T\textsubscript{2}ndfase: End of the large accumulation;

MAR: Maximum accumulation rate;

TMAR: Time of MAR;

DMAR: Duration of TMAR

Venegas et al. (1998); Greef et al. (1999)
Relative biomass production and nutrients accumulation

- Relative accumulation - ReA (kg ha\(^{-1}\)):
 \[AR_{e} = A_{f} - A_{i} \]

- Relative accumulation percentage:
 \[AR_{e} (%) = \frac{AR_{e}}{At} \times 100 \]

\(AR_{e} \) - Relative Accumulate / Sugarcane phases
\(A_{f} \) and \(A_{i} \) - Final and Begin Accumulate
\(At \) - Total accumulate by sugarcane
Biomass Production and Nitrogen Accumulation (Plant Cane Crop)

\[y = 258.17 \times \left[1 + \exp \left(\frac{DAP - 234.04}{4.53} \right) \right], R^2 = 0.944 \]

\[y = 90.356 \times \left[1 + \exp \left(\frac{DAP - 314.94}{9.44} \right) \right], R^2 = 0.975 \]

Oliveira et al. (2011)
Chemical properties

Phases of nutrients accumulation (Cane Plant Crop)

<table>
<thead>
<tr>
<th></th>
<th>1° fase</th>
<th></th>
<th>2° fase</th>
<th></th>
<th>3° fase</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Período</td>
<td>AR%</td>
<td>Periodo</td>
<td>AR%</td>
<td>Periodo</td>
<td>AR%</td>
</tr>
<tr>
<td>MS</td>
<td>0 - 191</td>
<td>8,0</td>
<td>12</td>
<td>245</td>
<td>53,0</td>
<td>80</td>
</tr>
<tr>
<td>N</td>
<td>0 - 117</td>
<td>24,7</td>
<td>12</td>
<td>237</td>
<td>157,7</td>
<td>78</td>
</tr>
<tr>
<td>P</td>
<td>0 - 148</td>
<td>3,1</td>
<td>12</td>
<td>224</td>
<td>20,0</td>
<td>80</td>
</tr>
<tr>
<td>K</td>
<td>0 - 130</td>
<td>57,2</td>
<td>12</td>
<td>230</td>
<td>365,8</td>
<td>78</td>
</tr>
<tr>
<td>Ca</td>
<td>0 - 130</td>
<td>9,4</td>
<td>12</td>
<td>160</td>
<td>60,0</td>
<td>74</td>
</tr>
<tr>
<td>Mg</td>
<td>0 - 131</td>
<td>7,0</td>
<td>13</td>
<td>331</td>
<td>45,0</td>
<td>84</td>
</tr>
<tr>
<td>S</td>
<td>0 - 120</td>
<td>5,4</td>
<td>12</td>
<td>194</td>
<td>34,7</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>313</td>
<td>276,6</td>
<td></td>
<td></td>
<td>436 - 483</td>
<td>5,0 8</td>
</tr>
<tr>
<td></td>
<td>236</td>
<td>943,8</td>
<td></td>
<td></td>
<td>354 - 483</td>
<td>20,0 10</td>
</tr>
<tr>
<td></td>
<td>260</td>
<td>125,2</td>
<td></td>
<td></td>
<td>372 - 483</td>
<td>1,9 8</td>
</tr>
<tr>
<td></td>
<td>245</td>
<td>2138,9</td>
<td></td>
<td></td>
<td>360 - 483</td>
<td>44,1 10</td>
</tr>
<tr>
<td></td>
<td>210</td>
<td>528,2</td>
<td></td>
<td></td>
<td>290 - 483</td>
<td>11,5 14</td>
</tr>
<tr>
<td></td>
<td>293</td>
<td>171,8</td>
<td></td>
<td></td>
<td>462 - 483</td>
<td>1,3 3</td>
</tr>
<tr>
<td></td>
<td>234</td>
<td>257,7</td>
<td></td>
<td></td>
<td>314 - 483</td>
<td>9,4 10</td>
</tr>
</tbody>
</table>

*TMAC-MS: kg ha\(^{-1}\)dia\(^{-1}\); *TMAC-Macronutrientes: g ha\(^{-1}\)dia\(^{-1}\); **AR-MS: Mg ha\(^{-1}\); **AR-Macronutrientes: kg ha\(^{-1}\)

Genotype: SP81 - 3250, an average of three Oxisols

Oliveira et al. (2011)
Phases of nutrients accumulation (Ratoon Crop)

<table>
<thead>
<tr>
<th></th>
<th>1° fase</th>
<th>2° fase</th>
<th>3° fase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Período</td>
<td>AR (%)</td>
<td>Período</td>
</tr>
<tr>
<td>Período</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>0 - 151</td>
<td>4,5</td>
<td>197</td>
</tr>
<tr>
<td>N</td>
<td>0 - 72</td>
<td>13,2</td>
<td>190</td>
</tr>
<tr>
<td>P</td>
<td>0 - 78</td>
<td>1,8</td>
<td>195</td>
</tr>
<tr>
<td>K</td>
<td>0 - 90</td>
<td>28,4</td>
<td>134</td>
</tr>
<tr>
<td>Ca</td>
<td>0 - 117</td>
<td>6,2</td>
<td>163</td>
</tr>
<tr>
<td>Mg</td>
<td>0 - 118</td>
<td>3,8</td>
<td>219</td>
</tr>
<tr>
<td>S</td>
<td>0 - 95</td>
<td>3,2</td>
<td>153</td>
</tr>
</tbody>
</table>

*TMAC-MS: kg ha⁻¹ dia⁻¹; TMAC-Macronutrientes: g ha⁻¹ dia⁻¹; **AR-MS: Mg ha⁻¹; **AR-Macronutrientes: kg ha⁻¹*

Genotype: SP81 - 3250, an average of three Oxisols

Oliveira et al. (2011)
Low nutrient use efficiency

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Efficiency (%)</th>
<th>Cause of low efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen</td>
<td>30-50</td>
<td>Immobilization, volatilization, denitrification, Leaching</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>15-20</td>
<td>Fixation in soils Al – P, Fe – P, Ca – P</td>
</tr>
<tr>
<td>Potassium</td>
<td>70-80</td>
<td>Fixation in clay - lattices</td>
</tr>
<tr>
<td>Sulphur</td>
<td>8-10</td>
<td>Immobilization, Leaching with water</td>
</tr>
<tr>
<td>Micro nutrients</td>
<td>1-2</td>
<td>Fixation in soils</td>
</tr>
<tr>
<td>(Zn, Fe, Cu, Mn, B)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chemical properties (Soil pH)

<table>
<thead>
<tr>
<th>pH Range</th>
<th>Nitrogen</th>
<th>Phosphorus</th>
<th>Potassium</th>
<th>Sulphur</th>
<th>Calcium</th>
<th>Magnesium</th>
<th>Iron</th>
<th>Manganese</th>
<th>Boron</th>
<th>Copper & Zinc</th>
<th>Molybdenum</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0-4.5</td>
<td></td>
</tr>
<tr>
<td>4.5-5.0</td>
<td></td>
</tr>
<tr>
<td>5.0-5.5</td>
<td></td>
</tr>
<tr>
<td>5.5-6.0</td>
<td></td>
</tr>
<tr>
<td>6.0-6.5</td>
<td></td>
</tr>
<tr>
<td>6.5-7.0</td>
<td></td>
</tr>
<tr>
<td>7.0-7.5</td>
<td></td>
</tr>
<tr>
<td>7.5-8.0</td>
<td></td>
</tr>
<tr>
<td>8.0-8.5</td>
<td></td>
</tr>
<tr>
<td>8.5-9.0</td>
<td></td>
</tr>
<tr>
<td>9.0-9.5</td>
<td></td>
</tr>
</tbody>
</table>
Role & consequences of excess Al

- Not essential or beneficial
- Toxic to some species (roots) & in Acid Sulfate soils
- Sugarcane has high tolerance of Al compared to species such as maize and most legumes
 - Ca must be adequate
- Al involved in P sorption/fixation in acid soils <pH5.5

Effect of Al on roots of sugarcane - photographs Andersen & Bowen, (1991)
Correction of soil acidity

Before liming

After liming

Soil + H₂ + CaCO₃ \rightarrow \text{Soil} + \text{Ca} + \text{H₂O} + \text{CO₂}
Neutralization of Al^{3+}

$3\text{CaCO}_3 + 3 \text{H}_2\text{O}$

$+ 2 \text{Al(OH)}_3 + 3 \text{CO}_2$

Insoluble
Chemical properties (Soil pH)

Brazil

Base saturation \((V\%)\)

\[
L \text{ (ton/ha)} = \frac{(60 - V\%) \times CEC}{(PRNT \times 10)}
\]
CaSO₄₄

Promotes the reduction of acidity and improves root depth.

\[2\text{CaSO}_4\cdot2\text{H}_2\text{O} \rightarrow \text{Ca}^{2+} + \text{SO}_4^{2-} + \text{CaSO}_4^0 + 4\text{H}_2\text{O} \]
Benefits

Source of Ca and S
Correction of acidity in subsurface
Improvement of root environment
Reduction of toxic Al3 (AlSO4).
Sub-soils - use gypsum if Ca<0.6 cmol$_c$/L & Al%>40

When the rates of gypsum to be applied are based on soil texture, you can use the following recommendation (RAIJ, 1997): dose to be

$$QG \text{ (kg ha}^{-1}\text{)} = \text{clay (g kg}^{-1}\text{)} \times 6.0$$
Photosynthesis & Respiration
- ATP
- NADP
Phosphorus - P

Role

• Uptake as HPO_4^{2-} or $\text{H}_2\text{PO}_4^{-}$ ions.

• Required for energy rich bonds (ADP, ATP)
 – CO_2 assimilation depends on P assimilation.

• Constituent of nucleic acids - cell division & heredity transfer - important in root & shoot growth.

• Helps crop maturation by biomass dilution of high N application.
P sorption

- P is “fixed” by Fe, Al & in acidic soils - also by humic-Al complexes
- <10% of applied P available in some high P fixing soils
- Implications for banding P, use of higher rates, pH adjustment

P sorption and ‘fixation’ at various values of soil pH

McLaren and Cameron, (1996)
Measurement of P in soil

- Ion exchange resins
 - Brasil - closer theoretical basis to P uptake by roots

<table>
<thead>
<tr>
<th>Phosphorus fertilizer for sugarcane, based on availability of phosphorus with ion exchange resin (t ha(^{-1}))</th>
<th>Extracted Phosphorus (mg dm(^{-3}))</th>
<th>(< 100)</th>
<th>(150)</th>
<th>(> 150)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 - 6</td>
<td>7 - 17</td>
<td>16 - 40</td>
<td>(> 40)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>---</td>
<td>80</td>
<td>44</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>< 100</td>
<td>90</td>
<td>55</td>
<td>40</td>
<td>26</td>
</tr>
<tr>
<td>150</td>
<td>100</td>
<td>66</td>
<td>45</td>
<td>35</td>
</tr>
</tbody>
</table>

For transforming P into P\(_2\)O\(_5\), multiply the desired value by 2.29.

Source: adapted from Raij (1997).
Interaction N:P in sugarcane

TCH = 40,27 + 0,09*N_{dose} + 0,06*P_{dose}

R^2 = 0,89*

*Significativo (p<0,05)

Fonte: Iqbal & Iqbal, 2001
Effect of nitrogen fertilization and drip irrigation (H₂O) in the yield of sugarcane and accumulation of N.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Dry matter stalks (Mg.ha⁻¹)</th>
<th>Yield stalks (Mg.ha⁻¹)</th>
<th>Yield sugar (Mg.ha⁻¹)</th>
<th>Dry matter shoot (Kg.ha⁻¹)</th>
<th>Accumulation N (Kg.ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dryland-0 kg ha⁻¹ N</td>
<td>17.59 c</td>
<td>64.7 c</td>
<td>10.8 c</td>
<td>31.9 c</td>
<td>81.5 c</td>
</tr>
<tr>
<td>Irrigation-0 kg ha⁻¹ N</td>
<td>24.08 b</td>
<td>83.6 b</td>
<td>14.4 b</td>
<td>41.4 b</td>
<td>97.5 c</td>
</tr>
<tr>
<td>Dryland-140 kg ha⁻¹ N</td>
<td>26.90 b</td>
<td>91.3 b</td>
<td>15.3 b</td>
<td>44.8 b</td>
<td>136.9 b</td>
</tr>
<tr>
<td>Irrigation-140 kg ha⁻¹ N</td>
<td>39.86 a</td>
<td>132.8 a</td>
<td>21.7 a</td>
<td>61.8 a</td>
<td>216.1 a</td>
</tr>
<tr>
<td>CV (%)</td>
<td>14.01</td>
<td>14.9</td>
<td>10.48</td>
<td>15.07</td>
<td>12.57</td>
</tr>
</tbody>
</table>

Means followed by different letters differ significantly by Tukey test (p<0.05).

Gava, et. al. (2010)
Simulation: APSIM-Sugarcane ("Agricultural Production Systems Simulator").
Table 1. Yields and fertilizer nitrogen use efficiency by sugar cane (mean first and second ratoons) when drip-fertigated in a silty clay soil at Belle Vue, Mauritius

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Yield (tonnes ha(^{-1}))</th>
<th>Fertilizer N use efficiency (%)</th>
<th>15N dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cane</td>
<td>Sugar</td>
<td>Difference method</td>
</tr>
<tr>
<td>1. Control (no N)</td>
<td>66.9</td>
<td>6.96</td>
<td>–</td>
</tr>
<tr>
<td>2. N buried 10 cm on one side of cane rows</td>
<td>128.2</td>
<td>14.56</td>
<td>32.6</td>
</tr>
<tr>
<td>3. N drip-fertigated daily during 5 weeks</td>
<td>138.0</td>
<td>14.20</td>
<td>54.0</td>
</tr>
<tr>
<td>4. N drip-fertigated daily during 10 weeks</td>
<td>142.6</td>
<td>15.14</td>
<td>62.0</td>
</tr>
<tr>
<td>5. N drip-fertigated daily during 20 weeks</td>
<td>130.0</td>
<td>13.46</td>
<td>52.5</td>
</tr>
<tr>
<td>6. 1/3 N drip-fertigated daily over 10 weeks +</td>
<td>123.8</td>
<td>13.16</td>
<td>51.8</td>
</tr>
<tr>
<td>2/3 N during next 10 weeks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSD ((p = 0.10))</td>
<td>20.6</td>
<td>1.84</td>
<td>19.6</td>
</tr>
</tbody>
</table>

120 kg N per ha as urea applied to all treatments (except the control) as from September.
Water and nitrogen interaction

A. Cane Yield

- Plant crop: $Y = 97.0 + 0.74X$, $r^2 = 0.23$
- 1st ratoon: $Y = 92.6 + 0.62X$, $r^2 = 0.18$
- 2nd ratoon: $Y = 102.4 + 0.085X$, $r^2 = 0.24$
- 3rd ratoon: $Y = 76.2 + 1.92X$, $r^2 = 0.59$

B. Sugar Yield

- $Y = 12.5 + 0.13X$, $r^2 = 0.54$

Wiedenfeld & Ensiso (2008)
Effect of nitrogen fertilization and drip irrigation (H₂O) in the yield of sugarcane and accumulation of N.

<table>
<thead>
<tr>
<th>Irrigated treatments</th>
<th>Dry matter stalks (Mg ha⁻¹)</th>
<th>Yield stalks (Mg ha⁻¹)</th>
<th>Yield sugar (Kg ha⁻¹)</th>
<th>Dry matter shoot (Kg ha⁻¹)</th>
<th>Accumulation N (Kg ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 N kg ha⁻¹</td>
<td>24.1</td>
<td>83.6</td>
<td>14.4</td>
<td>41.4</td>
<td>97.5</td>
</tr>
<tr>
<td>70 N kg ha⁻¹</td>
<td>25.7</td>
<td>97.5</td>
<td>16.7</td>
<td>49.3</td>
<td>163.9</td>
</tr>
<tr>
<td>140 N kg ha⁻¹</td>
<td>39.9</td>
<td>132.8</td>
<td>22.3</td>
<td>61.8</td>
<td>216.1</td>
</tr>
<tr>
<td>210 N kg ha⁻¹</td>
<td>39.8</td>
<td>130.4</td>
<td>21.6</td>
<td>64.1</td>
<td>227.0</td>
</tr>
<tr>
<td>Average</td>
<td>32.4</td>
<td>111.1</td>
<td>18.8</td>
<td>54.2</td>
<td>176.2</td>
</tr>
<tr>
<td>CV (%)</td>
<td>11.5</td>
<td>15.4</td>
<td>5.2</td>
<td>12.6</td>
<td>18.3</td>
</tr>
<tr>
<td>F – reg. 1⁰ gr</td>
<td>37.92*</td>
<td>30.7*</td>
<td>25.5*</td>
<td>23.84*</td>
<td>37.44*</td>
</tr>
<tr>
<td>R²</td>
<td>0.73</td>
<td>0.69</td>
<td>0.65</td>
<td>0.63</td>
<td>0.92</td>
</tr>
<tr>
<td>F – reg. 2⁰ gr</td>
<td>1.3 *</td>
<td>16.4 *</td>
<td>14.26 *</td>
<td>12.00*</td>
<td>2.9 ns</td>
</tr>
<tr>
<td>R²</td>
<td>0.75</td>
<td>0.72</td>
<td>0.69</td>
<td>0.65</td>
<td>-</td>
</tr>
</tbody>
</table>

* Significant by F test at p<0.05, ns: not significant.

Gava, et. al. (2010)
Simulation: APSIM-Sugarcane ("Agricultural Production Systems Simulator").

Gava, et. al. (2010)
Concentration of N-NH$_4$ and N-NO$_3$ in profiles 0-20 cm and 20-40 cm in different doses of N-fertilizer.

Kölln et al. (2010).
Yield maximum theoretical to sugarcane

Conclusion

Last year?

This field?

Next year?

That field?
Thank's for your attention
Glauber Gava: ggava@apta.sp.gov.br